Elementarmasse: Unterschied zwischen den Versionen

Aus Die absolute Theorie
Zur Navigation springenZur Suche springen
K (Änderte den Seitenschutzstatus von Elementarmasse [edit=sysop:move=sysop])
Zeile 6: Zeile 6:
 
== Proportionalitäten der Masse ==
 
== Proportionalitäten der Masse ==
  
Das Photon, welches sich mit Lichtgeschwindigkeit bewegt, muss die Elementarmasse haben. Das liegt daran, dass Fortbewegungsgeschwindigkeit v(fort) und Masse umgekehrt proportional sind. Ein schwarzes Loch rotiert mit Lichtgeschwindigkeit, es hat die höchste, nämlich die unendliche Masse, kann sich aber nicht fortbewegen, weil alles Geschwindigkeitspotential für die Rotation aufgebraucht wird. Ein Photon hingegen rotiert nicht, weil es alles Geschwindigkeitspotential für die Fortbewegung nutzt.
+
Das Photon, welches sich mit Lichtgeschwindigkeit bewegt, muss die Elementarmasse haben. Das liegt daran, dass Fortbewegungsgeschwindigkeit v(fort) und Masse umgekehrt proportional sind. Ein schwarzes Loch rotiert mit Lichtgeschwindigkeit, es hat die höchste, nämlich die unendliche Masse, kann sich aber nicht fortbewegen, weil alles Geschwindigkeitspotential für die Rotation aufgebraucht wird. Ein Photon hingegen rotiert minimalst, weil es fast alles Geschwindigkeitspotential für die Fortbewegung nutzt.
  
 
Zusammengefasst:
 
Zusammengefasst:
  
 
v(rot) ~ m
 
v(rot) ~ m
 +
 +
Für eine etwas genauere Herleitung, siehe den Artikel zu [[Äquivalenz von Rotationsgeschwindigkeit und Masse]]
  
 
v(fort) !~ m
 
v(fort) !~ m

Version vom 14. November 2010, 02:26 Uhr

Quantentheorie der Masse

Auch die Masse besteht aus einem Vielfachen der Elementarmasse, so würde man eine Quantentheorie der Masse aufstellen. Die Elementarmasse beträgt simpel: Wirkungsquantum h * Elementarzeit t(p) geteilt durch c. Laut Wikipedia soll bei dieser Rechnung m(p) = 2,17644 · 10^ −8 kg herauskommen.


Proportionalitäten der Masse

Das Photon, welches sich mit Lichtgeschwindigkeit bewegt, muss die Elementarmasse haben. Das liegt daran, dass Fortbewegungsgeschwindigkeit v(fort) und Masse umgekehrt proportional sind. Ein schwarzes Loch rotiert mit Lichtgeschwindigkeit, es hat die höchste, nämlich die unendliche Masse, kann sich aber nicht fortbewegen, weil alles Geschwindigkeitspotential für die Rotation aufgebraucht wird. Ein Photon hingegen rotiert minimalst, weil es fast alles Geschwindigkeitspotential für die Fortbewegung nutzt.

Zusammengefasst:

v(rot) ~ m

Für eine etwas genauere Herleitung, siehe den Artikel zu Äquivalenz von Rotationsgeschwindigkeit und Masse

v(fort) !~ m