Massenerhaltungssatz: Unterschied zwischen den Versionen
Till (Diskussion | Beiträge) (→Geschichte) |
Till (Diskussion | Beiträge) |
||
(20 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
== Geschichte == | == Geschichte == | ||
− | In der Chemie ist man schon lange übereins gekommen, dass die Masse in chemischen Prozessen erhalten bleibt. In der Physik ist das anders. Es gibt keinen allgemeingültigen Erhaltungssatz für die Masse. Als Gegenbeispiel wird die Paarvernichtung genommen. Hierbei wird ein Elektron und ein Positron in sogenannte reine Energie, also in ein Photonenpaar umgewandelt. Da man nach Einstein annimmt, dass Photonen eine Ruhemasse von 0 haben, nimmt man an, dass bei diesem Prozess Masse verloren geht. | + | In der Chemie ist man schon lange übereins gekommen, dass die [[Masse]] in chemischen Prozessen erhalten bleibt. In der Physik ist das anders. Es gibt keinen allgemeingültigen Erhaltungssatz für die [[Masse]]. Als Gegenbeispiel wird die Paarvernichtung genommen. Hierbei wird ein Elektron und ein Positron in sogenannte reine [[Energie]], also in ein Photonenpaar umgewandelt. Da man nach Einstein annimmt, dass Photonen eine Ruhemasse von 0 haben, nimmt man an, dass bei diesem Prozess [[Masse]] verloren geht. |
== Theorie == | == Theorie == | ||
− | Es ist eine Lehre des Lebens, dass wenn man auf einem Weg nicht weiterkommt, versuchen sollte, dass Problem umgekehrt anzugehen, um es zu durchleuchten. In der Geschichte der Physik wird davon ausgegangen, dass Photonen nicht nur die Ruhemasse 0 haben, sondern auch die Masse 0 haben. Dementsprechend wird | + | Es ist eine Lehre des Lebens, dass wenn man auf einem Weg nicht weiterkommt, versuchen sollte, dass Problem umgekehrt anzugehen, um es zu durchleuchten. In der Geschichte der Physik wird davon ausgegangen, dass Photonen nicht nur die Ruhemasse 0 haben, sondern auch die Masse 0 haben. Dementsprechend wird geschlussfolgert, dass es keine Erhaltung der Massen gibt. |
Gehen wir das Ganze umgekehrt an und noch einen Schritt zurück. | Gehen wir das Ganze umgekehrt an und noch einen Schritt zurück. | ||
− | E = | + | [[E=mc²]]: |
− | Einstein hat diese Gleichung aufgestellt, und sie hat ihn berühmt gemacht. Heutzutage wird vielfach angenommen, dass diese Gleichung nur in Extremfällen gilt und nicht universal gültig ist. Das ist natürlich falsch. Die [[Äquivalenz von Raum und Zeit]] aus absoluter Betrachtungsweise, heißt auch das E = | + | Einstein hat diese Gleichung aufgestellt, und sie hat ihn berühmt gemacht. Heutzutage wird vielfach angenommen, dass diese Gleichung nur in Extremfällen gilt und nicht universal gültig ist. Das ist natürlich falsch. Die [[Äquivalenz von Raum und Zeit]] aus absoluter Betrachtungsweise, heißt auch das [[E=mc²]] in absoluter Betrachtungsweise immer gilt. Die Geschwindigkeit ist immer c, also gleich der [[Lichtgeschwindigkeit]]. Jetzt sehen wir, dass es den [[Energieerhaltungssatz]] in der Physik gibt. Im geschlossenen System ist die Energie konstant. Man kann das in eine Gleichung fassen: E = const. Fassen wir nun die beiden beschriebenen Gleichungen zusammen, erhalten wir m * c² = const. im geschlossenen System. Da die [[Lichtgeschwindigkeit]] c immer konstant ist, teilen wir eine beliebige, aber bestimmte Zahl const. durch eine Zahl. Das Ergebnis ist natürlich eine beliebige aber eine bestimmte Zahl. Anschaulich erklärt: Die Energie im geschlossenen System wäre 4. Nach dem Einheitssystem kann man c = 1 setzen. 4 / 1 ist immer 4. Da die Energie sich nicht verändert, bleibt auch die äquivalente Masse gleich. Es gilt m = const / 1² = const. |
− | Also gilt der | + | Also gilt der Massenerhaltungssatz '''m = const.''' im geschlossenen System. |
== Folgerung == | == Folgerung == | ||
− | Gehen wir jetzt wieder zur Paarvernichtung von Elektron und Positron, bei ein oder mehrere Photonenpaare entstehen. Wir sehen, dass zu Beginn der Reaktion die beiden Ausgangsteilchen über Masse verfügen. Da die Masse in diesem Prozess erhalten bleiben muss, folgt daraus: Photonen besitzen eine Masse. Diese Frage hat Einstein | + | Gehen wir jetzt wieder zur Paarvernichtung von Elektron und Positron, bei der ein oder mehrere Photonenpaare entstehen. Wir sehen, dass zu Beginn der Reaktion die beiden Ausgangsteilchen über [[Masse]] verfügen. Da die [[Masse]] in diesem Prozess erhalten bleiben muss, folgt daraus: Photonen besitzen eine [[Masse]]. Mehr dazu kann man nachlesen unter [[Masse und Impuls eines Photons]]. Diese Frage hat Einstein bewusst offen gelassen und nur gesagt, Photonen hätten keine Ruhemasse. |
+ | |||
+ | == Erhaltung der Ruhemasse == | ||
+ | Heute im Jahre 2013 wurde mir auch klar, dass die Ruhemasse erhalten bleibt. Es ist wieder mal ganz einfach. Es geht um den Zusammenhang von Energie und Impuls nach Einstein. Die Formel dafür lautet: E² = E(0)² + c²p², wobei E die [[Energie]] ist, E(0) die Ruheenergie, p der Impuls und c die [[Lichtgeschwindigkeit]]. Der erfahrene Leser meines Wikis sollte schon wissen, worauf es hinaus läuft. Wir betrachten das ganze für das geschlossene System und setzen alle Größen konstant, von denen wir wissen, dass sie erhalten bleiben. Nach dem [[Energieerhaltungssatz]] ist E konstant im geschlossenen System, nach dem [[Impulserhaltungssatz]] ist p konstant im geschlossenen System. Also ergibt sich: | ||
+ | |||
+ | const² = E(0)² + c² * const² | ||
+ | |||
+ | Wenn ein Ausdruck konstant ist, ist auch das Quadrat konstant, weil das Quadrat einer beliebigen, aber bestimmten Zahl auch eine beliebige, aber bestimmte Zahl ist. Dann ergibt sich mit der Konstanz der [[Lichtgeschwindigkeit]] c Folgendes: | ||
+ | |||
+ | const. = E(0)² + const. | ||
+ | |||
+ | Also ergibt sich | ||
+ | |||
+ | E(0)² = const. - const. | ||
+ | |||
+ | Die Differenz zweier beliebig, aber bestimmten Zahlen ist aber auch eine beliebige, aber bestimmte Zahl. Genauso ist die Wurzel einer beliebigen, aber bestimmten Zahl, auch eine beliebig, aber bestimmte Zahl, auch wenn es Plus- und Minuswerte gibt. Diese sind aber fest definiert. | ||
+ | |||
+ | E(0)² = const. | ||
+ | |||
+ | '''E(0) = const.''' | ||
+ | |||
+ | Das ist der Erhaltungssatz der Ruheenergien. | ||
+ | |||
+ | Da aber E(0) = m(0) * c² gilt, beziehungsweise m(0) = E(0) / c², gilt m(0) = const. / c². Da aber eine beliebige, aber bestimmte Zahl durch eine Konstante wiederum eine beliebige, aber bestimmte Zahl ist, gilt: | ||
+ | |||
+ | '''m(0) = const.''' | ||
+ | |||
+ | Das ist der Erhaltungssatz der Ruhemassen im geschlossenen System. Heute wird vielfach im Internet die Ruhemasse als die eigentliche Masse tituliert. Das ist falsch: Ruhemasse ist die Masse, die ein Teilchen annimmt, wenn es in absoluter Ruhe ist. Da nach Einstein nichts in absoluter Ruhe vorkommt, ist sie ein theoretischer Begriff. Aber auch die Ruhemasse bleibt erhalten, so dass der Annahme des Massenerhaltungssatz nichts mehr im Wege steht, auch nicht kleine Vertauschungen von Masse und Ruhemasse. | ||
+ | |||
+ | == Verhältnis Masse zu Ruheenergie == | ||
+ | Auf Wikipedia wird angenommen, dass die Masse nur zur Ruheenergie beiträgt. Da aber [[radioaktive Strahlung]], genauer Gamma Strahlung, Ruheenergie in kinetische Energie umwandeln könne, wie die Wikipedianer meinen, kann es keinen allgemein gültigen Erhaltungssatz der Masse geben. | ||
+ | |||
+ | Das ist schon aus zwei Überlegungen falsch. Zum einen haben wir eben die Erhaltung der Ruhemasse bewiesen und auch den Erhaltungssatz der Ruheenergien. Also kann nicht so einfach Ruheenergie in kinetische Energie umgewandelt werden, und schon gar nicht im geschlossenen System. Man muss sich das anders vorstellen. Es wird Bindungsenergie freigesetzt. Die Photonen oder Gammastrahlen, eine Art [[radioaktive Strahlung]], sind schon vorher als Bindungsteilchen in dem Stoff vorhanden. Da er instabil ist, werden die Bindungsteilchen nach und nach freigesetzt. Zusätzliche kinetische Energie wird dabei nicht frei, haben die Photonen sowohl als Bindungsteilchen als auch als freie Energie meist die [[Lichtgeschwindigkeit]] c. Da diese Teilchen wie gesagt schon vorher dem Stoff inhärent waren, wird auch keine Ruhemasse verloren, was ja auch dem Erhaltungssatz widersprechen würde. | ||
+ | |||
+ | Eine weitere Betrachtung mag vielleicht den Irrtum auf Wikipedia erklären. Letztlich wird ein Teilchen je schneller es wird desto leichter. Das Photon hat weniger eV als das Elektron welches wiederum weniger eV als das Proton hat, usw... Wenn jetzt aber das Teilchen schneller wird und dabei Ruheenergie verliert, z.B. bei der Paarvernichtung, so steigt natürlich der Anteil an kinetischer Energie. Nicht nur das, sondern auch das Verhältnis zwischen kinetischer Energie und Ruheenergie wird immer höher. Daher prophezeit die absolute Theorie für die Elektron - Positron Annihilation auch ein weiteres Teilchen, welches schwerer ist als ein Elektron und soweit absehbar neutral geladen ist. Wahrscheinlich zerfällt dieses Teilchen dann wiederum, so dass es bisher nicht beobachtet wurde. Dennoch müssen die Summe der Ruhemassen der Photonen + x den Ruhemassen von Elektron und Positron entsprechen. Und da die asse auch erhalten bleibt und Photonen schneller als Elektron und Positron sind soweit wir wissen, muss das entstehende Teilchen auch langsamer sein, weil ja der Durchschnitt der Geschwindigkeiten auf beiden Seiten der Reaktionsgleichung gleich bleiben muss. Also v(Elektron) + v(Positron) / 2 = v(Photon) + v(x) / Anzahl Photonen + Anzahl x. |
Aktuelle Version vom 18. August 2018, 09:25 Uhr
Inhaltsverzeichnis
Geschichte
In der Chemie ist man schon lange übereins gekommen, dass die Masse in chemischen Prozessen erhalten bleibt. In der Physik ist das anders. Es gibt keinen allgemeingültigen Erhaltungssatz für die Masse. Als Gegenbeispiel wird die Paarvernichtung genommen. Hierbei wird ein Elektron und ein Positron in sogenannte reine Energie, also in ein Photonenpaar umgewandelt. Da man nach Einstein annimmt, dass Photonen eine Ruhemasse von 0 haben, nimmt man an, dass bei diesem Prozess Masse verloren geht.
Theorie
Es ist eine Lehre des Lebens, dass wenn man auf einem Weg nicht weiterkommt, versuchen sollte, dass Problem umgekehrt anzugehen, um es zu durchleuchten. In der Geschichte der Physik wird davon ausgegangen, dass Photonen nicht nur die Ruhemasse 0 haben, sondern auch die Masse 0 haben. Dementsprechend wird geschlussfolgert, dass es keine Erhaltung der Massen gibt.
Gehen wir das Ganze umgekehrt an und noch einen Schritt zurück. E=mc²: Einstein hat diese Gleichung aufgestellt, und sie hat ihn berühmt gemacht. Heutzutage wird vielfach angenommen, dass diese Gleichung nur in Extremfällen gilt und nicht universal gültig ist. Das ist natürlich falsch. Die Äquivalenz von Raum und Zeit aus absoluter Betrachtungsweise, heißt auch das E=mc² in absoluter Betrachtungsweise immer gilt. Die Geschwindigkeit ist immer c, also gleich der Lichtgeschwindigkeit. Jetzt sehen wir, dass es den Energieerhaltungssatz in der Physik gibt. Im geschlossenen System ist die Energie konstant. Man kann das in eine Gleichung fassen: E = const. Fassen wir nun die beiden beschriebenen Gleichungen zusammen, erhalten wir m * c² = const. im geschlossenen System. Da die Lichtgeschwindigkeit c immer konstant ist, teilen wir eine beliebige, aber bestimmte Zahl const. durch eine Zahl. Das Ergebnis ist natürlich eine beliebige aber eine bestimmte Zahl. Anschaulich erklärt: Die Energie im geschlossenen System wäre 4. Nach dem Einheitssystem kann man c = 1 setzen. 4 / 1 ist immer 4. Da die Energie sich nicht verändert, bleibt auch die äquivalente Masse gleich. Es gilt m = const / 1² = const.
Also gilt der Massenerhaltungssatz m = const. im geschlossenen System.
Folgerung
Gehen wir jetzt wieder zur Paarvernichtung von Elektron und Positron, bei der ein oder mehrere Photonenpaare entstehen. Wir sehen, dass zu Beginn der Reaktion die beiden Ausgangsteilchen über Masse verfügen. Da die Masse in diesem Prozess erhalten bleiben muss, folgt daraus: Photonen besitzen eine Masse. Mehr dazu kann man nachlesen unter Masse und Impuls eines Photons. Diese Frage hat Einstein bewusst offen gelassen und nur gesagt, Photonen hätten keine Ruhemasse.
Erhaltung der Ruhemasse
Heute im Jahre 2013 wurde mir auch klar, dass die Ruhemasse erhalten bleibt. Es ist wieder mal ganz einfach. Es geht um den Zusammenhang von Energie und Impuls nach Einstein. Die Formel dafür lautet: E² = E(0)² + c²p², wobei E die Energie ist, E(0) die Ruheenergie, p der Impuls und c die Lichtgeschwindigkeit. Der erfahrene Leser meines Wikis sollte schon wissen, worauf es hinaus läuft. Wir betrachten das ganze für das geschlossene System und setzen alle Größen konstant, von denen wir wissen, dass sie erhalten bleiben. Nach dem Energieerhaltungssatz ist E konstant im geschlossenen System, nach dem Impulserhaltungssatz ist p konstant im geschlossenen System. Also ergibt sich:
const² = E(0)² + c² * const²
Wenn ein Ausdruck konstant ist, ist auch das Quadrat konstant, weil das Quadrat einer beliebigen, aber bestimmten Zahl auch eine beliebige, aber bestimmte Zahl ist. Dann ergibt sich mit der Konstanz der Lichtgeschwindigkeit c Folgendes:
const. = E(0)² + const.
Also ergibt sich
E(0)² = const. - const.
Die Differenz zweier beliebig, aber bestimmten Zahlen ist aber auch eine beliebige, aber bestimmte Zahl. Genauso ist die Wurzel einer beliebigen, aber bestimmten Zahl, auch eine beliebig, aber bestimmte Zahl, auch wenn es Plus- und Minuswerte gibt. Diese sind aber fest definiert.
E(0)² = const.
E(0) = const.
Das ist der Erhaltungssatz der Ruheenergien.
Da aber E(0) = m(0) * c² gilt, beziehungsweise m(0) = E(0) / c², gilt m(0) = const. / c². Da aber eine beliebige, aber bestimmte Zahl durch eine Konstante wiederum eine beliebige, aber bestimmte Zahl ist, gilt:
m(0) = const.
Das ist der Erhaltungssatz der Ruhemassen im geschlossenen System. Heute wird vielfach im Internet die Ruhemasse als die eigentliche Masse tituliert. Das ist falsch: Ruhemasse ist die Masse, die ein Teilchen annimmt, wenn es in absoluter Ruhe ist. Da nach Einstein nichts in absoluter Ruhe vorkommt, ist sie ein theoretischer Begriff. Aber auch die Ruhemasse bleibt erhalten, so dass der Annahme des Massenerhaltungssatz nichts mehr im Wege steht, auch nicht kleine Vertauschungen von Masse und Ruhemasse.
Verhältnis Masse zu Ruheenergie
Auf Wikipedia wird angenommen, dass die Masse nur zur Ruheenergie beiträgt. Da aber radioaktive Strahlung, genauer Gamma Strahlung, Ruheenergie in kinetische Energie umwandeln könne, wie die Wikipedianer meinen, kann es keinen allgemein gültigen Erhaltungssatz der Masse geben.
Das ist schon aus zwei Überlegungen falsch. Zum einen haben wir eben die Erhaltung der Ruhemasse bewiesen und auch den Erhaltungssatz der Ruheenergien. Also kann nicht so einfach Ruheenergie in kinetische Energie umgewandelt werden, und schon gar nicht im geschlossenen System. Man muss sich das anders vorstellen. Es wird Bindungsenergie freigesetzt. Die Photonen oder Gammastrahlen, eine Art radioaktive Strahlung, sind schon vorher als Bindungsteilchen in dem Stoff vorhanden. Da er instabil ist, werden die Bindungsteilchen nach und nach freigesetzt. Zusätzliche kinetische Energie wird dabei nicht frei, haben die Photonen sowohl als Bindungsteilchen als auch als freie Energie meist die Lichtgeschwindigkeit c. Da diese Teilchen wie gesagt schon vorher dem Stoff inhärent waren, wird auch keine Ruhemasse verloren, was ja auch dem Erhaltungssatz widersprechen würde.
Eine weitere Betrachtung mag vielleicht den Irrtum auf Wikipedia erklären. Letztlich wird ein Teilchen je schneller es wird desto leichter. Das Photon hat weniger eV als das Elektron welches wiederum weniger eV als das Proton hat, usw... Wenn jetzt aber das Teilchen schneller wird und dabei Ruheenergie verliert, z.B. bei der Paarvernichtung, so steigt natürlich der Anteil an kinetischer Energie. Nicht nur das, sondern auch das Verhältnis zwischen kinetischer Energie und Ruheenergie wird immer höher. Daher prophezeit die absolute Theorie für die Elektron - Positron Annihilation auch ein weiteres Teilchen, welches schwerer ist als ein Elektron und soweit absehbar neutral geladen ist. Wahrscheinlich zerfällt dieses Teilchen dann wiederum, so dass es bisher nicht beobachtet wurde. Dennoch müssen die Summe der Ruhemassen der Photonen + x den Ruhemassen von Elektron und Positron entsprechen. Und da die asse auch erhalten bleibt und Photonen schneller als Elektron und Positron sind soweit wir wissen, muss das entstehende Teilchen auch langsamer sein, weil ja der Durchschnitt der Geschwindigkeiten auf beiden Seiten der Reaktionsgleichung gleich bleiben muss. Also v(Elektron) + v(Positron) / 2 = v(Photon) + v(x) / Anzahl Photonen + Anzahl x.